Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of controlled mesocosms for understanding mercury air-soil-plant exchange.

Identifieur interne : 004316 ( Main/Exploration ); précédent : 004315; suivant : 004317

Application of controlled mesocosms for understanding mercury air-soil-plant exchange.

Auteurs : M S Gustin [États-Unis] ; J A Ericksen ; D E Schorran ; D W Johnson ; S E Lindberg ; J S Coleman

Source :

RBID : pubmed:15573605

Descripteurs français

English descriptors

Abstract

Whole system elemental mercury (Hg0) flux was measured for approximately 1.5 years using two large gas exchange mesocosms containing approximately 100 two-year old aspen trees (Populus tremuloides) planted in soil with elevated mercury concentrations (12.3 microg/g). We hypothesized that during leafout, whole mesocosm Hg0 flux would increase due to movement of Hg0 in the transpiration stream from the soil to the air. This hypothesis was not supported; plants were found to assimilate Hg0 from the contaminated air, and whole system Hg0 emissions were reduced as plants leafed-out due to shading of the soil. Surface disturbance, watering, and increases in soil moisture, light, and temperature were all found to increase whole system Hg0 flux, with light being a more significant factor. Although surface soils were maintained at 15-20% moisture, daily watering caused pulses of Hg0 to be released from the soil throughout the experiment. Data developed in this experiment suggested that those processes acting on the soil surface are the primary influence on Hg emissions and that the presence of vegetation, which shields soil surfaces from incident light, reduces Hg emissions from enriched soils.

DOI: 10.1021/es0487933
PubMed: 15573605


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of controlled mesocosms for understanding mercury air-soil-plant exchange.</title>
<author>
<name sortKey="Gustin, M S" sort="Gustin, M S" uniqKey="Gustin M" first="M S" last="Gustin">M S Gustin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural Resources and Environmental Sciences, University of Nevada, Reno, Nevada 89557, USA. msg@unr.nevada.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resources and Environmental Sciences, University of Nevada, Reno, Nevada 89557</wicri:regionArea>
<wicri:noRegion>Nevada 89557</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ericksen, J A" sort="Ericksen, J A" uniqKey="Ericksen J" first="J A" last="Ericksen">J A Ericksen</name>
</author>
<author>
<name sortKey="Schorran, D E" sort="Schorran, D E" uniqKey="Schorran D" first="D E" last="Schorran">D E Schorran</name>
</author>
<author>
<name sortKey="Johnson, D W" sort="Johnson, D W" uniqKey="Johnson D" first="D W" last="Johnson">D W Johnson</name>
</author>
<author>
<name sortKey="Lindberg, S E" sort="Lindberg, S E" uniqKey="Lindberg S" first="S E" last="Lindberg">S E Lindberg</name>
</author>
<author>
<name sortKey="Coleman, J S" sort="Coleman, J S" uniqKey="Coleman J" first="J S" last="Coleman">J S Coleman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15573605</idno>
<idno type="pmid">15573605</idno>
<idno type="doi">10.1021/es0487933</idno>
<idno type="wicri:Area/Main/Corpus">004157</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004157</idno>
<idno type="wicri:Area/Main/Curation">004157</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004157</idno>
<idno type="wicri:Area/Main/Exploration">004157</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of controlled mesocosms for understanding mercury air-soil-plant exchange.</title>
<author>
<name sortKey="Gustin, M S" sort="Gustin, M S" uniqKey="Gustin M" first="M S" last="Gustin">M S Gustin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural Resources and Environmental Sciences, University of Nevada, Reno, Nevada 89557, USA. msg@unr.nevada.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resources and Environmental Sciences, University of Nevada, Reno, Nevada 89557</wicri:regionArea>
<wicri:noRegion>Nevada 89557</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ericksen, J A" sort="Ericksen, J A" uniqKey="Ericksen J" first="J A" last="Ericksen">J A Ericksen</name>
</author>
<author>
<name sortKey="Schorran, D E" sort="Schorran, D E" uniqKey="Schorran D" first="D E" last="Schorran">D E Schorran</name>
</author>
<author>
<name sortKey="Johnson, D W" sort="Johnson, D W" uniqKey="Johnson D" first="D W" last="Johnson">D W Johnson</name>
</author>
<author>
<name sortKey="Lindberg, S E" sort="Lindberg, S E" uniqKey="Lindberg S" first="S E" last="Lindberg">S E Lindberg</name>
</author>
<author>
<name sortKey="Coleman, J S" sort="Coleman, J S" uniqKey="Coleman J" first="J S" last="Coleman">J S Coleman</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Diffusion (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Environmental Monitoring (MeSH)</term>
<term>Mercury (metabolism)</term>
<term>Plant Transpiration (physiology)</term>
<term>Populus (metabolism)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Volatilization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Diffusion (MeSH)</term>
<term>Mercure (métabolisme)</term>
<term>Polluants du sol (analyse)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Surveillance de l'environnement (MeSH)</term>
<term>Transpiration des plantes (physiologie)</term>
<term>Volatilisation (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mercury</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mercure</term>
<term>Polluants du sol</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Diffusion</term>
<term>Ecosystem</term>
<term>Environmental Monitoring</term>
<term>Volatilization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Diffusion</term>
<term>Surveillance de l'environnement</term>
<term>Volatilisation</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Whole system elemental mercury (Hg0) flux was measured for approximately 1.5 years using two large gas exchange mesocosms containing approximately 100 two-year old aspen trees (Populus tremuloides) planted in soil with elevated mercury concentrations (12.3 microg/g). We hypothesized that during leafout, whole mesocosm Hg0 flux would increase due to movement of Hg0 in the transpiration stream from the soil to the air. This hypothesis was not supported; plants were found to assimilate Hg0 from the contaminated air, and whole system Hg0 emissions were reduced as plants leafed-out due to shading of the soil. Surface disturbance, watering, and increases in soil moisture, light, and temperature were all found to increase whole system Hg0 flux, with light being a more significant factor. Although surface soils were maintained at 15-20% moisture, daily watering caused pulses of Hg0 to be released from the soil throughout the experiment. Data developed in this experiment suggested that those processes acting on the soil surface are the primary influence on Hg emissions and that the presence of vegetation, which shields soil surfaces from incident light, reduces Hg emissions from enriched soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15573605</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0013-936X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>38</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2004</Year>
<Month>Nov</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of controlled mesocosms for understanding mercury air-soil-plant exchange.</ArticleTitle>
<Pagination>
<MedlinePgn>6044-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Whole system elemental mercury (Hg0) flux was measured for approximately 1.5 years using two large gas exchange mesocosms containing approximately 100 two-year old aspen trees (Populus tremuloides) planted in soil with elevated mercury concentrations (12.3 microg/g). We hypothesized that during leafout, whole mesocosm Hg0 flux would increase due to movement of Hg0 in the transpiration stream from the soil to the air. This hypothesis was not supported; plants were found to assimilate Hg0 from the contaminated air, and whole system Hg0 emissions were reduced as plants leafed-out due to shading of the soil. Surface disturbance, watering, and increases in soil moisture, light, and temperature were all found to increase whole system Hg0 flux, with light being a more significant factor. Although surface soils were maintained at 15-20% moisture, daily watering caused pulses of Hg0 to be released from the soil throughout the experiment. Data developed in this experiment suggested that those processes acting on the soil surface are the primary influence on Hg emissions and that the presence of vegetation, which shields soil surfaces from incident light, reduces Hg emissions from enriched soils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gustin</LastName>
<ForeName>M S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resources and Environmental Sciences, University of Nevada, Reno, Nevada 89557, USA. msg@unr.nevada.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ericksen</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schorran</LastName>
<ForeName>D E</ForeName>
<Initials>DE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>D W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindberg</LastName>
<ForeName>S E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>J S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FXS1BY2PGL</RegistryNumber>
<NameOfSubstance UI="D008628">Mercury</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004058" MajorTopicYN="N">Diffusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008628" MajorTopicYN="N">Mercury</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15573605</ArticleId>
<ArticleId IdType="doi">10.1021/es0487933</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Coleman, J S" sort="Coleman, J S" uniqKey="Coleman J" first="J S" last="Coleman">J S Coleman</name>
<name sortKey="Ericksen, J A" sort="Ericksen, J A" uniqKey="Ericksen J" first="J A" last="Ericksen">J A Ericksen</name>
<name sortKey="Johnson, D W" sort="Johnson, D W" uniqKey="Johnson D" first="D W" last="Johnson">D W Johnson</name>
<name sortKey="Lindberg, S E" sort="Lindberg, S E" uniqKey="Lindberg S" first="S E" last="Lindberg">S E Lindberg</name>
<name sortKey="Schorran, D E" sort="Schorran, D E" uniqKey="Schorran D" first="D E" last="Schorran">D E Schorran</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Gustin, M S" sort="Gustin, M S" uniqKey="Gustin M" first="M S" last="Gustin">M S Gustin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004316 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004316 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15573605
   |texte=   Application of controlled mesocosms for understanding mercury air-soil-plant exchange.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15573605" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020